Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Life Sci Alliance ; 7(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38697845

RESUMEN

Defective mitophagy in renal tubular epithelial cells is one of the main drivers of renal fibrosis in diabetic kidney disease. Our gene sequencing data showed the expression of PINK1 and BNIP3, two key molecules of mitophagy, was decreased in renal tissues of VDR-knockout mice. Herein, streptozotocin (STZ) was used to induce renal interstitial fibrosis in mice. VDR deficiency exacerbated STZ-induced renal impairment and defective mitophagy. Paricalcitol (pari, a VDR agonist) and the tubular epithelial cell-specific overexpression of VDR restored the expression of PINK1 and BNIP3 in the renal cortex and attenuated STZ-induced kidney fibrosis and mitochondrial dysfunction. In HK-2 cells under high glucose conditions, an increased level of α-SMA, COL1, and FN and a decreased expression of PINK1 and BNIP3 with severe mitochondrial damage were observed, and these alterations could be largely reversed by pari treatment. ChIP-qPCR and luciferase reporter assays showed VDR could positively regulate the transcription of Pink1 and Bnip3 genes. These findings reveal that VDR could restore mitophagy defects and attenuate STZ-induced fibrosis in diabetic mice through regulation of PINK1 and BNIP3.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Ergocalciferoles , Proteínas de la Membrana , Ratones Noqueados , Mitofagia , Proteínas Quinasas , Receptores de Calcitriol , Estreptozocina , Animales , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Ratones , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Receptores de Calcitriol/metabolismo , Receptores de Calcitriol/genética , Mitofagia/genética , Mitofagia/efectos de los fármacos , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Humanos , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/genética , Masculino , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Fibrosis , Túbulos Renales/metabolismo , Túbulos Renales/patología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Ratones Endogámicos C57BL , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos
3.
Mol Med Rep ; 29(4)2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38426545

RESUMEN

Liver sinusoidal endothelial cells (LSECs) have an important role in hepatic ischemia­reperfusion injury (I/R), but the specific molecular mechanism of action is unknown. LSEC proliferation is regulated and fenestration is maintained via the Sentrin/SUMO­specific protease 1 (SENP1)/hypoxia­inducible factor­1α (HIF­1α) signaling axis under hypoxic conditions. In the present study, a hypoxia­reoxygenation (H­R) injury model was established using mouse LSECs to explore the relationship between SENP1 and H­R injury in vitro, and the specific underlying mechanism was identified, revealing new targets for the clinical attenuation of hepatic I/R injury. Following the culture of LSECs under H­R conditions, it was demonstrated that the expression of SENP1 was upregulated by reverse transcription­quantitative polymerase chain reaction and western blotting (WB). In addition, scanning electron microscopy indicated that fenestrae damage was increased, a Cell Counting Kit­8 assay demonstrated that the proliferation of cells was impaired and flow cytometry showed that apoptosis was increased. After silencing SENP1 expression with short interfering RNA, the proliferation activity of LSECs decreased, the fenestrae damage increased, the apoptosis rate increased and the expression levels of SENP1, HIF­1α, heme oxygenase and Bcl­2 were downregulated (as demonstrated by WB), while the expression levels of apoptosis­related proteins, cleaved­caspase­3 and Bax, were upregulated. Enzyme­linked immunosorbent assay detection showed that the level of vascular endothelial growth factor in the supernatant decreased and the level of IL­6 and TNF­α increased. Following the administration of an HIF­1α signaling pathway agonist, the situation was reversed. These results therefore suggested that SENP1 attenuated the reduction in proliferation, apoptosis and fenestration of LSECs observed following H­R injury through the HIF­1α signaling pathway. In conclusion, SENP1 may attenuate H­R injury in LSECs in a HIF­1α signaling pathway­dependent manner.


Asunto(s)
Células Endoteliales , Péptido Hidrolasas , Animales , Ratones , Capilares/metabolismo , Hipoxia de la Célula , Células Endoteliales/metabolismo , Hipoxia/metabolismo , Hígado/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo
4.
Redox Biol ; 70: 103062, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38320454

RESUMEN

PURPOSE: To investigate the regulatory effect and mechanism of Vitamin D receptor (VDR) on mitochondrial function in renal tubular epithelial cell under diabetic status. METHODS: The diabetic rats induced by streptozotocin (STZ) and HK-2 cells under high glocose(HG)/transforming growth factor beta (TGF-ß) stimulation were used in this study. Calcitriol was administered for 24 weeks. Renal tubulointerstitial injury and some parameters of mitochondrial function including mitophagy, mitochondrial fission, mitochondrial ROS, mitochondrial membrane potential (MMP), mitochondrial ATP, Complex V activity and mitochondria-associated ER membranes (MAMs) integrity were examined. Additionally, paricalcitol, 3-MA (an autophagy inhibitor), VDR over-expression plasmid, VDR siRNA and Mfn2 siRNA were applied in vitro. RESULTS: The expression of VDR, Pink1, Parkin, Fundc1, LC3II, Atg5, Mfn2, Mfn1 in renal tubular cell of diabetic rats were decreased significantly. Calcitriol treatment reduced the levels of urinary albumin, serum creatinine and attenuated renal tubulointerstitial fibrosis in STZ induced diabetic rats. In addition, VDR agonist relieved mitophagy dysfunction, MAMs integrity, and inhibited mitochondrial fission, mitochondrial ROS. Co-immunoprecipitation analysis demonstrated that VDR interacted directly with Mfn2. Mitochondrial function including mitophagy, mitochondrial membrane potential (MMP), mitochondrial Ca2+, mitochondrial ATP and Complex V activity were decreased dramatically in HK-2 cells under HG/TGF-ß ambience. In vitro pretreatment of HK-2 cells with autophagy inhibitor 3-MA, VDR siRNA or Mfn2 siRNA negated the activating effects of paricalcitol on mitochondrial function. Pricalcitol and VDR over-expression plasmid activated Mfn2 and then partially restored the MAMs integrity. Additionally, VDR restored mitophagy was partially associated with MAMs integrity through Fundc1. CONCLUSION: Activated VDR could contribute to restore mitophagy through Mfn2-MAMs-Fundc1 pathway in renal tubular cell. VDR could recover mitochondrial ATP, complex V activity and MAMs integrity, inhibit mitochondrial fission and mitochondrial ROS. It indicating that VDR agonists ameliorate renal tubulointerstitial fibrosis in diabetic rats partially via regulation of mitochondrial function.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Receptores de Calcitriol , Animales , Ratas , Adenosina Trifosfato/metabolismo , Calcitriol/farmacología , Diabetes Mellitus Experimental/patología , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Células Epiteliales/metabolismo , Fibrosis , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , ARN Interferente Pequeño/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
5.
Antioxid Redox Signal ; 40(1-3): 16-39, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37053105

RESUMEN

Aims: This study investigated the regulatory effect of Mitofusin2 (Mfn2) on mitochondria-associated endoplasmic reticulum membrane (MAM) integrity and cellular injury in cisplatin-induced acute kidney injury (CP-AKI). Results: CP-AKI mice exhibited decreased expression of Mfn2, increased expression of phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK), abnormal mitochondrial morphology, and reduced MAMs integrity, accompanied by the activation of mitochondrial reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress (inositol-requiring enzyme 1 [IRE1] and PERK pathways). In in vitro studies, CP-induced mitochondrial ROS, ER-stress activation, and increased apoptosis were accompanied by the downregulation of Mfn2 and MAMs integrity reduction in Boston University mouse proximal tubular cells (BUMPT) and human proximal tubular epithelial cells (HK-2). Pretreatment of BUMPT cells with the Mfn2 plasmid partially restored the integrity of MAMs, negatively controlled IRE1 and PERK pathways, and inhibited cell apoptosis. In contrast, ER-stress and MAMs integrity violations were increased after Mfn2 small-interfering RNA (siRNA) treatment in HK-2 cells under CP treatment. Coimmunoprecipitation analysis demonstrated that Mfn2 interacted with PERK and IRE1. Furthermore, the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), acadesine (AICAR), had a similar effect to Mfn2 plasmid in the regulation of ER stress and MAMs. Conversely, the ER-stress inhibitor, 4-phenylbutyric acid (4-PBA), had no effect on the expression of Mfn2 and MAMs integrity. Innovation and Conclusion: This is the first study to explore the association between MAMs, ER stress, and Mfn2 in CP-AKI. Downregulation of Mfn2 expression abolished the MAMs integrity, and induced ER stress, mitochondrial ROS, and tubular cell apoptosis. This suggests that the Mfn2-MAMs pathway is a potential therapeutic target in CP-AKI. Antioxid. Redox Signal. 40, 16-39. The Ethical Registration number of animal experiment in this study was CSU-2022-01-0095.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Ratones , Humanos , Animales , Especies Reactivas de Oxígeno/metabolismo , Cisplatino/efectos adversos , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Estrés del Retículo Endoplásmico , Mitocondrias/metabolismo , Retículo Endoplásmico/metabolismo , Apoptosis , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/metabolismo
6.
Sci Rep ; 13(1): 11088, 2023 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-37422508

RESUMEN

To investigate the effects and mechanism of Vitamin D receptor (VDR) signaling on arteriovenous fistula (AVF) endothelial cell injury. Venous tissues of AVF stenosis patients were collected and analyzed, vascular morphology, reactive oxygen species (ROS), and the expression of VDR, P66Shc, fibronectin (FN), collagen-1 (Col-1) were detected. In addition, human umbilical vein endothelial cells (HUVECs) was used in in vitro studies. HUVECs was incubated with transforming growth factor-beta (TGF-ß, 50 ng/ml). Aditionally, paricalcitol, VDR overexpression plasmid and Pin1 inhibitor Juglone were used to investigate the regulatory mechanism of VDR in mitochondrial ROS. The parameters of ROS (e.g. MitoSox) and the expression of FN, Col-1 were tested. Moreover, the mitochondrial translocation of P66Shc was analyzed. The expression of VDR was obviously decreased in the venous tissues of AVF stenosis patients. On the contrary, the expression of P66Shc, P-P66Shc, FN, Col-1 and 8-OHdG were increased significantly in the venous tissues of AVF stenosis patients (P < 0.05). In line with this, the level of mitochondrial ROS and the expression of P66Shc, P-P66Shc, FN, Col-1 increased obviously in HUVECs cells under TGF-ß condition. Both VDR over-expression plasmid and Pin1 inhibitor Juglone could alleviate TGF-ß induced endothelial injury. Mechanistically, VDR overexpression plasmid and Juglone could inhibit the expression of Pin1, and then restrain P66Shc mitochondrial translocation, eventually reduce the level of mitochondrial ROS. Our research indicated that activation of VDR could alleviate venous endothelial cell dysfunction through inhibiting Pin1-mediated mitochondrial translocation of P66Shc and consequently reducing mitochondrial ROS. It suggested that VDR signaling might be an effective target for AVF stenosis treatment.


Asunto(s)
Fístula Arteriovenosa , Humanos , Especies Reactivas de Oxígeno/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/genética , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo , Constricción Patológica/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Fístula Arteriovenosa/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo
7.
Cell Death Discov ; 9(1): 158, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173347

RESUMEN

Activating transcription factor 4 (ATF4) is one of the key effectors of endoplasmic reticulum stress (ERS), ATF4/CHOP pathway-mediated ERS plays an important role in the progression of acute kidney disease (AKI). We have previously reported that Vitamin D receptor (VDR) exert renoprotection in rodent AKI models. However, whether ATF4, as well as ERS, is involved in the protective effect of VDR in ischemia-reperfusion (I/R) induced AKI is unknown. Herein, we showed that VDR agonist paricalcitol and VDR overexpression alleviated I/R-induced renal injury and cells apoptosis with decreased ATF4 and attenuated ERS, while VDR deletion significantly resulted in further increased ATF4, more drastic ERS and renal injury in I/R mice models. In addition, paricalcitol remarkably reduced Tunicamycin (TM) induced ATF4 and ERS with attenuated renal injury, while VDR deletion aggravated the above changes in TM mice models. Moreover, overexpression of ATF4 partially abolished the effect of paricalcitol against TM-induced ERS and apoptosis, while inhibition of ATF4 enhanced the protective effect of paricalcitol. Bioinformatics analysis indicated potential VDR binding sites on ATF4 promotor sequence which were further confirmed by ChIP-qPCR and dual-luciferase reporter gene assay. In conclusion, VDR attenuated I/R-induced AKI by suppressing ERS partly via transcriptional regulation of ATF4.

8.
Hemodial Int ; 27(3): 231-240, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37010240

RESUMEN

INTRODUCTION: Arteriovenous fistula (AVF) is a primary dialysis vascular access commonly used for maintaining hemodialysis (MHD) patients. Vitamin D (VD) is a fat-soluble steroid hormone that is closely related to vascular endothelial function. This study aimed to investigate the association between VD metabolites and AVF failure in patients undergoing HD. METHODS: This study included 443 HD patients using AVF between January 2010 and January 2020. The AVF operations in these patients were newly created by the same physician. We analyzed the AVF patency rates using the chi-square test. Univariate and multivariate logistic regression analyses were performed to explore risk factors for AVF failure. Survival analysis was performed to explore AVF survival at different serum 25-hydroxyvitamin D (25(OH)D) concentrations. RESULTS: Logistic regression analyses showed that male sex; age; BMI; serum albumin, triglyceride, phosphorus, 25(OH)D, iPTH and hemoglobin levels, history of hypertension, CHD, diabetes, stroke, and antiplatelet drug use; and smoking habits were not risk factors for AVF failure. The failure incidence rates of AVF in subjects in the VD deficiency and non VD deficiency group were not statistically significant (25.0% vs. 30.8%, p = 0.344). The AVF failure incidence rates at 1, 3, and 5 years in the patients with 25(OH)D levels more than 20 ng/mL were 26%, 29%, and 37%, respectively, and the one-year AVF failure incidence rates were 27% in the patients with 25(OH)D levels less than 20 ng/mL. In addition, the Kaplan-Meier analysis suggested that the no significant differences were noted when calculating the cumulative survival rates of AVF between the two groups within 50 months of AVF using. CONCLUSION: Our findings suggest that 25(OH)D deficiency is not associated with AVF failure incidence rates, and that 25(OH)D deficiency has no significant impact on long-term cumulative AVF survival rate.


Asunto(s)
Fístula Arteriovenosa , Derivación Arteriovenosa Quirúrgica , Fallo Renal Crónico , Femenino , Humanos , Masculino , Fístula Arteriovenosa/etiología , Derivación Arteriovenosa Quirúrgica/efectos adversos , Diálisis Renal/efectos adversos , Grado de Desobstrucción Vascular , Vitamina D
11.
J Med Internet Res ; 25: e41142, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36603200

RESUMEN

BACKGROUND: Cardiac surgery-associated acute kidney injury (CSA-AKI) is a major complication following pediatric cardiac surgery, which is associated with increased morbidity and mortality. The early prediction of CSA-AKI before and immediately after surgery could significantly improve the implementation of preventive and therapeutic strategies during the perioperative periods. However, there is limited clinical information on how to identify pediatric patients at high risk of CSA-AKI. OBJECTIVE: The study aims to develop and validate machine learning models to predict the development of CSA-AKI in the pediatric population. METHODS: This retrospective cohort study enrolled patients aged 1 month to 18 years who underwent cardiac surgery with cardiopulmonary bypass at 3 medical centers of Central South University in China. CSA-AKI was defined according to the 2012 Kidney Disease: Improving Global Outcomes criteria. Feature selection was applied separately to 2 data sets: the preoperative data set and the combined preoperative and intraoperative data set. Multiple machine learning algorithms were tested, including K-nearest neighbor, naive Bayes, support vector machines, random forest, extreme gradient boosting (XGBoost), and neural networks. The best performing model was identified in cross-validation by using the area under the receiver operating characteristic curve (AUROC). Model interpretations were generated using the Shapley additive explanations (SHAP) method. RESULTS: A total of 3278 patients from one of the centers were used for model derivation, while 585 patients from another 2 centers served as the external validation cohort. CSA-AKI occurred in 564 (17.2%) patients in the derivation cohort and 51 (8.7%) patients in the external validation cohort. Among the considered machine learning models, the XGBoost models achieved the best predictive performance in cross-validation. The AUROC of the XGBoost model using only the preoperative variables was 0.890 (95% CI 0.876-0.906) in the derivation cohort and 0.857 (95% CI 0.800-0.903) in the external validation cohort. When the intraoperative variables were included, the AUROC increased to 0.912 (95% CI 0.899-0.924) and 0.889 (95% CI 0.844-0.920) in the 2 cohorts, respectively. The SHAP method revealed that baseline serum creatinine level, perfusion time, body length, operation time, and intraoperative blood loss were the top 5 predictors of CSA-AKI. CONCLUSIONS: The interpretable XGBoost models provide practical tools for the early prediction of CSA-AKI, which are valuable for risk stratification and perioperative management of pediatric patients undergoing cardiac surgery.


Asunto(s)
Lesión Renal Aguda , Procedimientos Quirúrgicos Cardíacos , Humanos , Niño , Estudios Retrospectivos , Teorema de Bayes , Medición de Riesgo/métodos , Factores de Riesgo , Procedimientos Quirúrgicos Cardíacos/efectos adversos , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/etiología , Lesión Renal Aguda/epidemiología , Aprendizaje Automático
12.
Nefrologia (Engl Ed) ; 43(3): 335-343, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36517360

RESUMEN

BACKGROUND: The associated factors of peritoneal small solute transport was not fully understood. This research aimed to investigate the connection between dialysate inflammatory markers (e.g. macrophage migration inhibitory factor, MIF) in peritoneal dialysis (PD) effluent and peritoneal solute transport rate (PSTR) properties. SUBJECTS AND DESIGN: A total of 80 stable PD patients in the First ShaoYang Hospital were enrolled in present study. Overnight PD effluent and serum inflammatory markers including MIF, MCP-1, VEGF, IL-6, TNFα and TGFß were detected. Pearson correlation analysis and Logistic regression was performed to determine the risk factors for the increased PSTR. RESULTS: A trend toward increased values of MIF, MCP-1 and IL-6 in PD effluent was observed in subjects with high PSTR when compared with those with low PSTR. The Pearson correlation test showed that D/P Cr exhibited positive correlations with dialysis effluent MIF (r=0.32, p=0.01), MCP-1 (r=0.47, p=0.01), IL-6 (r=0.48, p=0.01). Conversely, no significant correlation was found between D/P Cr and TGF-ß (r=0.04, p=0.70), TNF-ɑ (r=0.22, p=0.05), VEGF (r=0.02, p=0.86) and serum inflammatory markers. In the unadjusted regression analysis, dialysis effluent MIF (OR 2.41), MCP-1 (OR 1.72), IL-6 (OR 1.55) were associated with high PSTR condition. Multivariate logistic regression analysis showed that the adjusted odds ratios (OR) of dialysis effluent MIF for high PSTR were 2.47 in all subjects (p=0.03). CONCLUSION: Elevated MIF, MCP-1 and IL-6 levels in PD effluent were associated with increased PSTR. Elevated dialysis effluent MIF levels was an independent risk factor for high PSTR in subjects with PD treatment.

13.
Psychol Health Med ; 28(5): 1201-1214, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36411542

RESUMEN

This study investigates the relationship between academic achievement, psychological distress, and smartphone addiction in medical students. In total, 513 medical students voluntarily completed a survey that included the Personal Information Questionnaire, the Smartphone Addiction Scale-Short Version (SAS-SV), the Depression, Anxiety and Stress Scale (DASS-21), and the Interaction Anxiousness Scale (IAS). Results showed that 321 participants were screened positive for smartphone addiction and the prevalence of smartphone addiction was 62.6%. We found that the prevalence of smartphone addiction was higher among male rather than female students (67.1% vs 58.2%; p = 0.039). There were significant differences between the smartphone addiction group and the smartphone non-addiction group as per the DASS-21 scores and the IAS scores. In addition, multiple regression indicated that psychological distress including anxiety, stress, depression, and social anxiety might be the predictors of smartphone addiction. However, smartphone addiction was found to have no significant correlation with academic performance in 274 undergraduate medical students. In conclusion, the study revealed the high prevalence of smartphone addiction in medical students. Smartphone addiction was associated with states of depression, anxiety, stress, and social anxiety, and there was no significant relationship between academic performance and smartphone addiction in undergraduate medical students. Further longitudinal research is needed to clarify the causal relationship between smartphone addiction and psychological distress.


Asunto(s)
Éxito Académico , Conducta Adictiva , Distrés Psicológico , Estudiantes de Medicina , Humanos , Masculino , Femenino , Estudiantes de Medicina/psicología , Estudios Transversales , Trastorno de Adicción a Internet , Teléfono Inteligente , Conducta Adictiva/epidemiología
14.
FASEB J ; 37(2): e22738, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36583727

RESUMEN

Vitamin D receptor was previously reported to be protective in acute kidney injury (AKI) with the mechanism unclear, while the role of renal localized glutathione peroxidase 3 (GPX3) was not illustrated. The present study aims to investigate the role of GPX3 as well as its correlation with vitamin D-vitamin D receptor (VD-VDR) in ischemia-reperfusion (I/R)-induced renal oxidative stress injury. We showed that the expression of GPX3 and VDR were consistently decreased in renal tissues of I/R-related AKI patients and mice models. VDR agonist paricalcitol could reverse GPX3 expression and inhibit oxidative stress in I/R mice or hypoxia-reoxygenation (H/R) insulted HK-2 cells. VDR deficiency resulted in aggregated oxidative stress and severer renal injury accompanied by further decreased renal GPX3, while tubular-specific VDR overexpression remarkably reduced I/R-induced renal injury with recovered GPX3 in mice. Neither serum selenium nor selenoprotein P was affected by paricalcitol administration nor Vdr modification in vivo. In addition, inhibiting GPX3 abrogated the protective effects of VD-VDR in HK-2 cells, while GPX3 overexpression remarkably attenuated H/R-induced oxidative stress and apoptosis. Mechanistic probing revealed the GPX3 as a VDR transcriptional target. Our present work revealed that loss of renal GPX3 may be a hallmark that promotes renal oxidative stress injury and VD-VDR could protect against I/R-induced renal injury via inhibition of oxidative stress partly by trans-regulating GPX3. In addition, maintenance of renal GPX3 could be a therapeutic strategy for ischemic AKI.


Asunto(s)
Lesión Renal Aguda , Glutatión Peroxidasa , Receptores de Calcitriol , Animales , Ratones , Lesión Renal Aguda/metabolismo , Apoptosis , Glutatión Peroxidasa/metabolismo , Isquemia/metabolismo , Riñón/metabolismo , Estrés Oxidativo , Receptores de Calcitriol/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo
15.
Altern Ther Health Med ; 29(3): 16-25, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36580671

RESUMEN

Aim: The aim of this study was to elucidate the potential mechanism of Rg1 in alleviating hepatic ischemia-reperfusion (HIRI) through the mitophagy pathway. Methods: The HIRI rat models were established and divided into 4 groups: the sham group, sham+Rg1 group, ischemia/perfusion (I/R) group and I/R+Rg1 group. Then the activities of aspartate transaminase (AST) and alanine aminotransferase (ALT) were detected by automatic serum analyzer. Meanwhile, cell apoptosis and changes in liver tissues were checked by TUNEL assay and histopathological analysis, respectively. The relative protein levels were detected by western blotting. Subsequently, cell counting Kit-8 assay and cytometric analysis were used to investigate cell viability and apoptosis of liver cells. Finally, the time points of the strongest mitochondrial autophagy were explored and the mitochondrial morphology was observed by the mitochondrial transmembrane potential (MMP) in vivo and in vitro. Results: The mitophagy aggravated hepatocyte damage during liver I/R in vivo. In addition, Rg1 alleviated liver damage after liver I/R, maintained the stability of MMP and inhibited mitochondrial autophagy and signaling pathways during liver I/R in vivo. Furthermore, Rg1 could effectively increase cell viability, inhibit cell apoptosis and stabilize MMP after OGD/R injury in vitro Moreover, Rg1 exerted its protective effect on HIRI by regulating the PINK1/Parkin signaling pathway and the mitochondrial autophagy. Conclusion: Rg1 could further improve its mechanism of alleviating HIRI in apoptosis and autophagy, 2 types of regulated programmed cell death via the mitochondrial pathway.


Asunto(s)
Daño por Reperfusión , Ratas , Animales , Ratas Sprague-Dawley , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Isquemia/metabolismo , Isquemia/patología , Hígado/metabolismo , Apoptosis , Autofagia , Reperfusión
16.
J Pharmacol Exp Ther ; 384(2): 296-305, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36357159

RESUMEN

Indobufen possesses anticoagulant and antithrombotic effects that can improve micro-inflammation and renal function. This study aimed to examine whether indobufen could improve the microinflammatory state in patients on continuous ambulatory peritoneal dialysis (CAPD) and explore its therapeutic effects on peritoneal transport function. A total of 60 patients undergoing CAPD from October 2019 to October 2020 were selected and randomized to the control and indobufen groups. All patients received conventional treatments. Blood routine and the serum and peritoneal effusion levels of tumor necrosis factor-α (TNF-α), transforming growth factor-ß1 (TGF-ß1), cellular fibronectin (cFN), and vascular endothelial growth factor were determined before and after 6 months of treatment. The peritoneal equilibrium test (PET) was used to evaluate peritoneal transport function. There were no significant differences in PET results, microinflammatory state, and biochemical indices between the two groups before treatment (P > 0.05). After 6 months of treatment, platelet-to-lymphocyte ratio and serum and peritoneal effusion TNF-α levels in the indobufen group were decreased compared with the control group (P < 0.05). Serum and peritoneal effusion TGF-ß1 and cFN levels in the indobufen group were reduced compared with the control group (P < 0.05). PET results in the indobufen group were decreased compared with baseline (P < 0.05). The difference in PET results between the two groups before and after treatment was statistically significant (P < 0.05). Indobufen could improve the peritoneal transport function in patients undergoing CAPD. The underlying mechanism might be related to the improvement of the microinflammatory state and peritoneal fibrosis. SIGNIFICANCE STATEMENT: Microinflammation and peritoneal fibrosis can lead to peritoneal failure in CAPD. Indobufen is a novel antiplatelet drug that can alleviate renal fibrosis and improve renal function in patients with diabetic nephropathy. Indobufen can improve the peritoneal transport function in patients undergoing CAPD. The mechanism of indobufen improving the peritoneal function might be related to the improvement of the microinflammatory state and peritoneal fibrosis.


Asunto(s)
Diálisis Peritoneal , Fibrosis Peritoneal , Humanos , Factor de Crecimiento Transformador beta1 , Factor de Necrosis Tumoral alfa , Factor A de Crecimiento Endotelial Vascular , Estudios Prospectivos , Diálisis Peritoneal/efectos adversos , Inflamación
17.
Curr Med Chem ; 30(6): 744-756, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35986536

RESUMEN

OBJECTIVE: The objective of this study is to evaluate the regulatory mechanism between P66Shc and ferroptosis in cisplatin-induced acute kidney injury (CP-AKI). METHODS: A CP-AKI model was constructed both in vivo and in vitro using C57BL/6 mice and HK-2 cells, respectively. Renal histopathological injury, reactive oxygen species (ROS), and apoptosis were detected. Some parameters of ferroptosis (e.g. 4HNE and GPX4) and the expression of P66Shc/ P-P66Shc both in mitochondria and cytoplasm were tested. In in vitro studies, HK-2 cells were incubated with CP (50 uM); additionally, Fer1 and P66Shc siRNA were applied to explore the molecular regulatory mechanism of P66Shc in ferroptosis. The levels of mitochondrial ROS, apoptosis and the expression of 4HNE,GPX4, P66Shc, and P-P66Shc were tested. Furthermore, the mitochondrial translocation of P66Shc was detected. RESULTS: CP treatment caused elevation of Scr, BUN and renal MDA levels and decreased renal SOD, GSH-PX and GPX4 levels. CP enhanced the expression of 4HNE, P66Shc and P-P66Shc both in vivo and in vitro. Renal oxidative stress and apoptosis were significantly increased in CP-AKI mice. Electron microscopy examination indicated obvious mitochondria injury in renal tubular cells of CP-AKI mice. The level of ferroptosis and the translocation of P-P66Shc from the cytoplasm to mitochondria were significantly increased in HK-2 cells under CP condition, and these effects were obviously blocked by P66Shc siRNA treatment. Conversely, pretreatment with the ferroptosis inhibitor (Fer1) had no effect on the expression and mitochondria translocation of PP66Shc under CP condition. CONCLUSION: Mitochondrial translocation of P66Shc could result in mitochondrial injury and lipid peroxide accumulation, which ultimately led to ferroptosis and aggravated CPinduced AKI.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Ferroptosis , Proteínas Adaptadoras de la Señalización Shc , Animales , Ratones , Lesión Renal Aguda/inducido químicamente , Línea Celular , Cisplatino/toxicidad , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Adaptadoras de la Señalización Shc/genética , Proteínas Adaptadoras de la Señalización Shc/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/genética , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo
18.
Nefrologia (Engl Ed) ; 42(4): 415-431, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36460431

RESUMEN

OBJECTIVE: The objective of this study was to evaluate the influence of ACE I/D gene polymorphisms on diabetic kidney disease (DKD) risk. METHODS: All eligible investigations were identified, the number of various genotype in the case and control group were reviewed. The pooled analysis was performed using Stata software. RESULTS: In overall subjects, 24,321 participants with 12,961 cases and 11,360 controls were included. the pooled analysis showed a significant link between D allele, DD or II genotype and DKD risk (D versus I: OR=1.316, 95% CI: 1.213-1.427, P=0.000; DD versus ID+II: OR=1.414, 95% CI: 1.253-1.595, P=0.000; II versus DD+ID: OR=0.750, 95% CI: 0.647-0.869, P=0.000). The subgroup pooled analysis showed that ACE I/D gene polymorphism was correlated with DKD both in Asian and in Chinese population. In addition, ACE I/D gene polymorphism was correlated with type 2 DKD (D versus I: OR=1.361, 95% CI: 1.243-1.490, P=0.000; DD versus ID+II: OR=1.503, 95% CI: 1.310-1.726, P=0.000; II versus DD+ID: OR=0.738, 95% CI: 0.626 -0.870, P=0.000). However, there was no obvious correlation in Caucasian subjects and type 1 diabetic patients. CONCLUSION: ACE I/D polymorphisms were correlated with DKD in Asian and type 2 diabetic populations. ACE D allele/DD genotype might be a risk factor, while ACE II genotype might be a protective factor for DKD.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Peptidil-Dipeptidasa A , Humanos , Nefropatías Diabéticas/genética , Genotipo , Peptidil-Dipeptidasa A/genética , Polimorfismo Genético , Factores Protectores
20.
Genet Test Mol Biomarkers ; 26(9): 430-442, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36166743

RESUMEN

Objective: This study was designed to evaluate the association between macrophage migration inhibitory factor (MIF) gene polymorphisms, serum MIF levels and tuberculosis (TB) susceptibility. Methods: All satisfactory studies were included; the MIF genotype number and serum MIF levels were reviewed. The Stata and Review Manager software were used for the pooled analyses. Results: The pooled analyses showed that the MIF-173G/C gene polymorphism was associated with TB (allele C vs allele G: odds ratio (OR) = 1.44, 95% confidence interval (CI): 1.28-1.62, p < 0.01; genotype CC vs genotype GG: OR = 1.69, 95% CI: 1.05-2.73, p = 0.03; genotype CC+GC vs genotype GG: OR = 1.56, 95% CI: 1.34-1.81, p < 0.01; genotype GC vs genotype GG: OR = 1.50, 95% CI: 1.28-1.75, p < 0.01). The subgroup analysis showed that the MIF-173G/C gene polymorphism was significantly associated with the risk of both pulmonary tuberculosis (PTB) and spinal tuberculosis (STB).The MIF CATT-794 gene polymorphism was associated with the PTB susceptibility in Asian subjects (genotypes 5/X+6/X vs genotypes 7/X+8/X: OR = 0.39, 95% CI: 0.24-0.64, p < 0.01; genotypes 5 + 6 vs genotypes 7 + 8: OR = 0.57, 95% CI: 0.48-0.69, p < 0.01). Both PTB and STB patients had significantly elevated serum MIF levels compared to healthy controls. Conclusion: The MIF-173G/C gene polymorphism is related to both PTB and STB susceptibility in both Asian and Caucasian populations. The C allele and CC genotype of the MIF-173G/C SNP appear to be TB risk factors. The MIF CATT-794 gene polymorphism is associated with the PTB susceptibility in Asian subjects; serum MIF levels were significantly increased in PTB and STB patients.


Asunto(s)
Factores Inhibidores de la Migración de Macrófagos , Tuberculosis Pulmonar , Tuberculosis de la Columna Vertebral , Alelos , Estudios de Casos y Controles , Predisposición Genética a la Enfermedad/genética , Genotipo , Humanos , Oxidorreductasas Intramoleculares , Factores Inhibidores de la Migración de Macrófagos/genética , Polimorfismo Genético , Polimorfismo de Nucleótido Simple/genética , Tuberculosis Pulmonar/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA